Canonical Bases of Singularity Ringel-hall Algebras and Hall Polynomials
نویسنده
چکیده
In this paper, the singularity Ringel-Hall algebras are defined. A new class of perverse sheaves are shown to have purity property. The canonical bases of singularity RingelHall algebras are constructed. As an application, the existence of Hall polynomials in the tame quiver algebras is proved.
منابع مشابه
Bgp-reflection Functors and Lusztig's Symmetries: a Ringel-hall Algebra Approach to Quantum Groups
According to the canonical isomorphisms between the Ringel-Hall algebras (composition algebras) and the quantum groups, we deduce the Lusztig's symmetries T 00 i;1 , i 2 I, by applying the Bernstein-Gelfand-Ponomarev reeection functors to the Drinfeld doubles of Ringel-Hall algebras. The fundamental properties of T 00 i;1 including the following can be obtained conceptually, (1). T 00 i;1 induc...
متن کاملFeynman Graphs, Rooted Trees, and Ringel-hall Algebras
We construct symmetric monoidal categoriesLRF ,LFG of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of LRF ,LFG, HLRF ,HLFG are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation...
متن کامل6 J un 2 00 8 FEYNMAN GRAPHS , ROOTED TREES , AND RINGEL - HALL ALGEBRAS
We construct symmetric monoidal categoriesLRF ,LFG of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of LRF ,LFG, HLRF ,HLFG are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation...
متن کاملRational Smoothness of Varieties of Representations for Quivers of Type A
In this paper, the authors study when the closure (in the Zariski topology) of orbits of representations of quivers of type A are rationally smooth. This is done by considering the corresponding quantized enveloping algebra U and studying the action of the bar involution on PBW bases. Using Ringel’s Hall algebra approach to quantized enveloping algebras and also AuslanderReiten quivers, we can ...
متن کاملFinite Dimensional Algebras, Quantum Groups and Finite Groups of Lie Type
We shall discuss generic extension monoids associated with finite dimensional (basic) hereditary algebras of finite or cyclic type and related applications to Ringel–Hall algebras, (and hence, to quantum groups). We shall briefly review the geometric setting of quantum gln by Beilinson, Lusztig and MacPherson and its connections to Ringel– Hall algebras and q-Schur algebras. In the second part ...
متن کامل